High Frequency Shock During Random Vibration Testing

Michael Mastovich

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

This material is based upon work supported under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Air Force.

© 2016 Massachusetts Institute of Technology

Delivered to the US Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

Overview

- Experienced high frequency shock during random vibration testing
- Geometry is a ball and gothic arch mount
- Incorrect stiffness of flexures in finite element model led to much higher reaction forces at interface
- What if this was not an audible event? Occurred above 2kHz, therefore outside of normal monitored range

Geometry

Y-axis Testing Results

- Testing aborted at -6dB: "peening" sound heard acoustically
- Analysis of data shows a max 446.32g shock event at 13kHz originating from flexure (off-axis)
 - Corresponding natural frequency shift during -6 dB test

	Natural Frequency (Hz)	
Testing Level	Ch. 17	Q Factor
Test 1: White Noise	192.5	47.97
Test 2: -18 dB	192.5	51.11
Test 3: -15 dB	192.5	50.14
Test 4: -12 dB	192.5	52.55
Test 5: -9 dB	192.5	44.99
Test 6: -6 dB	190	47.22
Test 7: White Noise	192.5	48.78

Shock Event

- -6dB Random Input
- Shock origination: Bottom Flexure

Shock Event Response at CG and Front Face

- Ydir Input -6dB Random
- Response at CG accelerometer and Front Face accelerometer

Shock Event Microphone Response

- Input -6dB Random
- Response on microphone normal to bottom flexure (channel 21)

Pre and Post White Noise Comparison

Resonant frequencies and damping are unchanged after the shock event during vibration at -6dB

Post Vibration Test Inspection

- No decisive macro-level scratching/chipping at interface of tooling balls or flexure
- No noticeable fractures on flexure staking

Solution

- System already in final configuration
- Not realistic to replace flexures, but needed to fix rotational stiffness
- Reduced shock down to acceptable levels by stiffening flexures using Constrained Damping Layer

Shock Event

Shock on Flexure

Summary

- Need to monitor boundary conditions
- Be aware of modeled stiffness vs actual stiffness
- Understand possible responses beyond 2kHz